Historical variation in the mineral composition of edible horticultural products

By P. J. $WHITE^1$ and M. R. BROADLEY^{2*}

¹Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK ²Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK (e-mail: martin.broadley@nottingham.ac.uk) (Accepted 8 July 2005)

SUMMARY

Historical variation in the mineral composition of edible horticultural products was determined from UK and USA food survey data. From these data, it was possible to measure the variation in the mineral composition of edible horticultural products in general, and in edible horticultural products grouped as vegetables, fruits or nuts, in the 1930s and in the 1980s (or later) for both countries. Thus, the hypothesis that the mineral composition of edible horticultural products had altered since the 1930s was tested. The average concentrations of Cu, Mg and Na in the dry matter of vegetables, and the average concentrations of Cu, Fe and K in fruits decreased significantly between the 1930s and the 1980s in the UK. The same hypothesis was tested with comparable data from the USA, whose historical horticultural and consumer practices have paralleled those of the UK. Data from the USA showed that the average Ca, Cu and Fe concentrations in the dry matter of vegetables, and the average concentrations of Cu, Fe and K in fruits had decreased significantly since the 1930s. There were insufficient data to determine if the mineral composition of any single edible horticultural species had altered significantly over time either in the UK or in the USA. The nutritional implications of this study are discussed. Since horticultural products in general, and fruits and nuts in particular, are relatively small contributors of minerals to the average UK diet, historical changes in mineral composition are unlikely to be significant in overall dietary terms.

Mayer (1997) presented evidence, based on a comparison of the data from McCance and Widdowson (1960) and Holland *et al.* (1991b), which indicated that the average dry matter content and mineral concentrations in fresh vegetables and fruits available in the UK had decreased since the 1930s. Since Mayer's paper, this sentiment has been repeated in the popular press, where the decrease in mineral concentrations in UK vegetables and fruits is often attributed to modern breeding and/or cultural practices. Thus, it is important to ascertain the statistical validity of these claims, since, if they are correct, there are opportunities to improve crop genotypes and cultural practices.

Here, we test the hypothesis that the mineral composition of vegetables, fruits and nuts available in the UK has altered since the 1930s. Data were obtained from the original notebooks of McCance and Widdowson (1929–1944) and from the Sixth Summary Edition of McCance and Widdowson's *The Composition of Foods* (Food Standards Agency, 2002). In contrast to the study by Mayer (1997), mineral concentration data were expressed on a dry weight (DW) basis to remove the variations caused by tissue hydration. Further, the same hypothesis was tested with comparable data from the USA, whose historical horticultural and consumer practices have paralleled those in the UK.

Since horticultural products in general, and fruits and nuts in particular, are relatively small contributors of minerals to most UK diets, historical changes in their mineral composition are unlikely to impact significantly on dietary intakes. However, if considered desirable, crop genotypes with higher mineral concentrations could be selected or bred, whilst agronomic interventions based on micro-nutrient fertilisation strategies could also be used to alter crop mineral compositions.

MATERIALS AND METHODS

Primary data

Data on Ca, Cl, Cu, Fe, K, Mg and Na concentrations in horticultural produce available in the UK between 1934–1935 were taken from the laboratory notebooks of McCance and Widdowson (Analysis of Foodstuffs, 1929-1944. The Wellcome Library for the History and Understanding of Medicine, London. GC/97/A). Data on P concentrations were taken from McCance et al. (1938). These data were compared with the most recent analyses of UK produce, contained in the Sixth Summary Edition of McCance and Widdowson's The Composition of Foods (Food Standards Agency, 2002). However, it should be noted that the data for mineral concentrations in raw vegetables, fruits and nuts in this publication were taken from supplements to the Fourth and Fifth Editions published by Holland et al. (1991a; 1992), which are mostly derived from analyses undertaken between 1984–1987. The Ca, Cu, Fe, K, Mg and P concentrations in produce available in the USA in the 1940s were taken from Beeson (1941). These data were compared with values abstracted from the United States Department of Agriculture (USDA) National

^{*}Author for correspondence.

Nutrient Database for Standard Reference, Release 16 (http://www.nal.usda.gov/fnic/foodcomp/Data), which represent the mineral concentrations in present-day produce. All data were expressed on a DW basis (Tables I and II). Clearly, the data must be interpreted subject to the *caveat* that analytical techniques have changed and become more sensitive since the 1930s.

Statistical analyses

The hypothesis that DW-based mineral concentrations in vegetables, fruits and nuts had altered since the 1930s was tested for each mineral element. A "new/old" quotient was calculated for each crop and mineral element (Table III). The natural logarithm of the "new/old" quotient was taken and a one sample, twotailed, *t*-test was performed with the null hypothesis that the logarithm of the quotient was equal to zero (Tables IV and V). A value significantly less than zero indicated a decline in mineral concentration, and a value significantly greater than zero indicated an increase in mineral concentration. Since each comparison was based on independent data for each mineral, no post hoc Type I error corrections were applied. All analyses were performed using GenStat (Release 6.1.0.200; VSN International, Oxford, UK).

RESULTS

The data of McCance and Widdowson (1929-1944), McCance et al. (1938) and Holland et al. (1991a; 1992) were not originally intended to be used to document historical trends in the mineral composition of horticultural produce. Instead, they are "representative" values of mineral concentrations for different types of produce (Tables I and II). Occasionally, data are given for different varieties of a vegetable or fruit, but this is not common. The sampling procedure for each vegetable, fruit or nut was to purchase a representative sample from several sources and to bulk these together prior to mineral analysis. Multiple analyses of the composite samples were then performed. Unfortunately, this sampling procedure does not allow the biological or genetic variation within a particular crop to be assessed. Without knowledge of this variation, it cannot be determined whether the representative values of mineral concentrations cited for a particular vegetable, fruit or nut differed significantly between the 1930s and the 1980s. Thus, there are insufficient data in these publications to test the hypothesis that the mineral composition of any *individual* horticultural crop product has declined. However, values for "produce in general" can be compared between the 1930s and 1980s, and therefore an estimate of variation can be derived for the changes in mineral concentrations in many different crops (Tables IV and V).

The "new/old" quotient for different crops and mineral elements varied considerably, with the concentrations of some minerals in some crops declining, and the concentrations of some minerals in some crops increasing. Statistical analyses indicated that the average concentrations of Cu, Mg and Na in the dry matter of vegetables, and the average concentrations of Cu, Fe and K in the dry matter of fruits available in the UK decreased significantly between the 1930s and the 1980s (Table IV). This is consistent with the observations of Mayer (1997), who undertook an analysis of the mineral concentrations in 20 raw vegetables and 20 fresh fruits. On a fresh, tissue weight basis, reductions in dry matter content and concentrations of Ca, Cu, Mg and Na in raw vegetables and Cu, Fe, K and Mg in fresh fruits available in the UK were noted over this period (Mayer, 1997). Interestingly, although the average Mg concentration in dried fruits available in the UK had decreased, the average Cu concentration in dried fruits had increased, and a significant increase in the average Cu concentration in the average Cu concentration in the average Cu concentration in the total the average Cu concentration in the total terms are cut concentration.

The average concentrations of Ca, Cu and Fe in vegetables available in the USA have decreased significantly since the 1930s (Table V). The decline in Cu is consistent with the decline in Cu in vegetables in the UK over the same period. A decline in Ca and Fe in vegetables is also consistent with a recent analysis of USDA data on horticultural products between 1950 and 1999 (Davis et al., 2004). Furthermore, our data indicate that the average concentrations of Cu, Fe and K in fruits available in the USA have decreased significantly since the 1930s (Table V), which is entirely consistent with data for fruits available in the UK (Table IV). A decrease in Fe concentrations in dried fruits available in the USA since the 1930s was also observed (Table V). However, there was no significant difference in mineral concentrations in nuts in the USA since the 1930s.

DISCUSSION

It can be concluded that the average concentrations of Cu, Mg and Na in the dry matter of vegetables and the average concentrations of Cu, Fe and K in the dry matter of fruits available in the UK have decreased significantly between the 1930s and the 1980s (Table IV). Since the average concentrations of Cu in the dry matter of vegetables, and the average concentrations of Cu, Fe and K in the dry matter of fruits, have also decreased since the 1930s in the USA (Table V), these phenomena might reflect modern agronomic practices. It is noteworthy that modern fertilisers have lower levels of contaminating metals, and that there has been a major reduction in the use of Cu-containing pesticides in conventional agricultural and horticultural production systems since the 1930s. However, historical changes are unlikely to have significant dietary impacts in the UK.

In dietary terms, the UK population consumes more Na per head d^{-1} than the recommended daily intake (Food Standards Agency, 2003), while table salt can be replaced by sodium salt substitutes containing KCl. Thus, any decrease in the K composition of horticultural produce is unlikely to be an important dietary issue. However, decreases in the average concentration of Cu in vegetables, and in the average concentrations of Cu and Fe in fruits, warrant further consideration.

In animals, tissue Cu concentrations are under tight homeostatic control. Although Cu is an essential element, it is toxic at high concentrations. The estimated safe and adequate dietary intake of Cu is $1.2 - 3.0 \text{ mg d}^{-1}$ (Food Standards Agency, 2003). Copper is necessary for the activity of several key enzymes, such as cytochrome *c* oxidase, amino acid oxidase, superoxide dismutase and monoamine oxidase, and Cu has been implicated in host

Mineral concentrations in horticultural crops

	-	M	,	<i>ance</i> et al and Widdo	(),	4		y the Fo	od Stan	dards Ag		002) Standards	Agenc	v (2002)	
	K	Ca	Mg	Fe	Cu	Na	Cl	Р	K	Ca	Mg	Fe	Cu	Na Na	Cl	Р
Vegetables Potato (old) Butter bean Haricot bean Lentil Runner bean Pea Aubergine Cabbage (red) Carrot (old) Celery Chicory Cucumber Lettuce Mushroom Mustard and cress Onion Parsnip Pumpkin Radish Spring onion Swede Tomato Turnip Watercress Endive Horseradish	2326 ¹ 1867 1260 720 3236 1536 3601 2932 2118 4257 4789 3930 4308 5517 4490 1881 1149 5821 3590 1711 1574 4338 3529 6062 2287	$\begin{array}{c} 32\\ 93\\ 195\\ 41\\ 391\\ 70\\ 157\\ 517\\ 455\\ 799\\ 485\\ 634\\ 535\\ 634\\ 535\\ 34\\ 880\\ 428\\ 314\\ 735\\ 654\\ 1023\\ 200\\ 880\\ 2499\\ 698\\ 470\\ \end{array}$	$\begin{array}{c} 100\\ 180\\ 199\\ 82\\ 270\\ 152\\ 145\\ 160\\ 113\\ 131\\ 131\\ 132\\ 253\\ 201\\ 155\\ 364\\ 104\\ 128\\ 154\\ 154\\ 154\\ 154\\ 154\\ 154\\ 154\\ 166\\ 110\\ 91\\ 165\\ 141\\ \end{array}$	$\begin{array}{c} 3.9\\ 6.5\\ 7.2\\ 8.1\\ 8.7\\ 8.2\\ 5.8\\ 5.5\\ 5.3\\ 6.5\\ 18.0\\ 8.4\\ 15.2\\ 12.1\\ 13.3\\ 7.2\\ 28.0\\ 9.4\\ 3.2\\ 6.5\\ 5.0\\ 18.2\\ 44.1\\ 8.0\\ \end{array}$	$\begin{array}{c} 0.60\\ 1.30\\ 0.70\\ 0.60\\ 1.10\\ 0.90\\ 0.80\\ 1.60\\ 3.60\\ 2.60\\ 3.10\\ 0.50\\ 1.50\\ 1.50\\ 1.50\\ 1.40\\ 1.90\\ 1.00\\ 0.40\\ 1.60\\ 0.60\\ \end{array}$	$\begin{array}{c} 27\\ 67\\ 47\\ 39\\ 76\\ 4\\ 38\\ 307\\ 9000\\ 2098\\ 193\\ 362\\ 63\\ 107\\ 254\\ 140\\ 42\\ 5\\ 883\\ 98\\ 604\\ 42\\ 868\\ 675\\ 161\\ 31\\ \end{array}$	324 51 2 68 267 172 925 432 649 2795 363 683 818 281 232 689 280 269 280 269 280 269 253 769 1048 1756 1122 74	$\begin{array}{c} 167\\ 348\\ 336\\ 259\\ 304\\ 482\\ 199\\ 485\\ 551\\ 672\\ 626\\ 1607\\ 874\\ 411\\ 395\\ 366\\ 405\\ 179\\ 220\\ 321\\ 412\\ 585\\ 1058\\ 277\\ \end{array}$	$\begin{array}{c} 1714\\ 1923\\ 1308\\ 926\\ 2500\\ 1299\\ 2958\\ 2688\\ 1667\\ 6531\\ 2982\\ 3889\\ 4490\\ 4324\\ 2340\\ 1455\\ 2174\\ 2600\\ 5217\\ 3338\\ 2174\\ 2600\\ 5217\\ 3333\\ 1932\\ 3623\\ 3182\\ 3067\\ 6032\\ 2292 \end{array}$	$\begin{array}{c} 24\\ 96\\ 203\\ 69\\ 375\\ 83\\ 141\\ 645\\ 245\\ 837\\ 368\\ 500\\ 571\\ 81\\ 1064\\ 227\\ 198\\ 580\\ 413\\ 500\\ 602\\ 101\\ 545\\ 2267\\ 698\\ 474 \end{array}$	$\begin{array}{c} 81\\ 215\\ 203\\ 108\\ 216\\ 134\\ 155\\ 97\\ 29\\ 102\\ 105\\ 222\\ 105\\ 222\\ 122\\ 468\\ 36\\ 111\\ 200\\ 109\\ 154\\ 102\\ 101\\ 91\\ 200\\ 159\\ 142 \end{array}$	$\begin{array}{c} 1.9\\ 6.7\\ 7.6\\ 10.5\\ 13.6\\ 11.0\\ 4.2\\ 4.3\\ 2.9\\ 8.2\\ 7.0\\ 8.3\\ 14.3\\ 2.7\\ 7.0\\ 8.3\\ 14.3\\ 2.7\\ 2.9\\ 8.0\\ 13.0\\ 24.4\\ 1.1\\ 7.2\\ 2.3\\ 29.3\\ 44.4\\ 7.9\end{array}$	$\begin{array}{c} 0.38\\ 0.84\\ 0.69\\ 0.90\\ 0.23\\ 0.20\\ 0.14\\ 0.11\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.21\\ 0.40\\ 0.22\\ 0.77\\ 0.21\\ 0.40\\ 0.22\\ 0.77\\ 0.11\\ 0.14\\ 0.11\\ 0.13\\ 0.16\\ 0.91\\ \end{array}$	$\begin{array}{c} 3\\ 45\\ 48\\ 27\\ 1\\ 28\\ 86\\ 245\\ 1224\\ 18\\ 83\\ 61\\ 1224\\ 18\\ 83\\ 61\\ 68\\ 404\\ 27\\ 48\\ -\\ 239\\ 90\\ 170\\ 130\\ 170\\ 130\\ 170\\ 130\\ 159\\ 32 \end{array}$	314 53 2 85 239 154 49 472 959 932 830 227 740 804 397 237 740 804 352 797 443 2267 1127 75	$\begin{array}{c} 176\\ 362\\ 349\\ 376\\ 386\\ 512\\ 225\\ 398\\ 147\\ 429\\ 474\\ 1361\\ 571\\ 1081\\ 702\\ 273\\ 357\\ 380\\ 435\\ 372\\ 455\\ 348\\ 466\\ 693\\ 1063\\ 277\\ \end{array}$
Fruits Apples, eating Apples, cooking Apricots Avocado pear Bananas Blackberries Cherries, eating Cherries, cooking Cranberries Currants, black Currants, vathe Currants, vathe Gooseberries, ripe Gooseberries, vathe Graepages Headhars Melons, cantaloupe Mulberries Nectarines Oranges Passion Fruit Peaches Pears, eating Pineapple Plums, Victoria Desse Plums, cooking Pomegranate Quinces Raspberries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries Rabuerries	1041 1414 2509 1397 1099 1711 963 4906 1718 1354 1409 1303 1872 705 1566	$\begin{array}{c} 23\\ 25\\ 129\\ 82\\ 23\\ 350\\ 86\\ 100\\ 114\\ 267\\ 207\\ 134\\ 45\\ 104\\ 222\\ 281\\ 113\\ 58\\ 184\\ 77\\ 725\\ 234\\ 118\\ 300\\ 238\\ 20\\ 296\\ 58\\ 35\\ 43\\ 37\\ 77\\ 69\\ 93\\ 200\\ 298\\ 242\\ 1754\\ 197\\ 315\\ 239\end{array}$	$\begin{array}{c} 30\\ 20\\ 92\\ 157\\ 142\\ 163\\ 52\\ 57\\ 76\\ 74\\ 76\\ 90\\ 49\\ 130\\ 70\\ 70\\ 53\\ 26\\ 111\\ 35\\ 78\\ 166\\ 41\\ 317\\ 101\\ 64\\ 92\\ 145\\ 57\\ 37\\ 107\\ 45\\ 53\\ 22\\ 38\\ 129\\ 232\\ 105\\ 85\\ 231 \end{array}$	$\begin{array}{c} 1.9\\ 2.0\\ 2.8\\ 2.8\\ 1.4\\ 4.7\\ 2.0\\ 1.5\\ 8.6\\ 7.1\\ 5.5\\ 2.0\\ 1.8\\ 2.7\\ 3.2\\ 3.5\\ 1.7\\ 2.8\\ 1.7\\ 2.8\\ 1.7\\ 2.4\\ 9.1\\ 1.9\\ 12.7\\ 10.5\\ 2.3\\ 4.2\\ 2.8\\ 1.27\\ 2.2\\ 2.0\\ 1.0\\ 7.2\\ 6.7\\ 6.4\\ 2.0\\ 4.2\end{array}$	$egin{array}{cccc} 0.70 \\ 0.70 \\ 0.90 \\ 1.10 \\ 0.60 \\ 0.40 \\ 0.50 \\ 1.10 \\ 0.60 \\ 0.70 \\ 0.80 \\ 0.70 \\ 0.40 \\ 0.40 \\ 0.90 \\ 0.50 \\ 0.70 \\ 0.40 \\ 0.50 \\ 0.70 \\ 0.40 \\ 0.30 \\ 0.50 \\ 0.70 \\ 0.40 \\ 0.30 \\ 0.50 \\ 0.60 \\ 0.$	$\begin{array}{c} 15\\ 15\\ 0\\ 86\\ 4\\ 20\\ 15\\ 20\\ 14\\ 12\\ 13\\ 9\\ 52\\ 12\\ 10\\ 19\\ 7\\ 8\\ 14\\ 6\\ 40\\ 16\\ 24\\ 212\\ 14\\ 46\\ 20\\ 14\\ 106\\ 20\\ 14\\ 106\\ 20\\ 14\\ 106\\ 20\\ 14\\ 10\\ 11\\ 13\\ 8\\ 20\\ 15\\ 37\\ 14\\ 17\\ 338 \end{array}$	$\begin{array}{c} 8\\ 31\\ 0\\ 32\\ 271\\ 122\\ 0\\ 0\\ 0\\ 0\\ 65\\ 81\\ 64\\ 150\\ 0\\ 119\\ 65\\ 66\\ 5\\ 14\\ 0\\ 34\\ 105\\ 12\\ 684\\ 24\\ 24\\ 24\\ 23\\ 137\\ 0\\ 3181\\ 0\\ 0\\ 362\\ 12\\ 132\\ 1485\\ 157\\ 18\\ 781\\ \end{array}$	$\begin{array}{c} 49\\ 112\\ 159\\ 165\\ 96\\ 132\\ 91\\ 103\\ 87\\ 191\\ 171\\ 167\\ 191\\ 73\\ 209\\ 337\\ 117\\ 95\\ 167\\ 104\\ 140\\ 162\\ 110\\ 162\\ 110\\ 478\\ 319\\ 121\\ 170\\ 203\\ 134\\ 67\\ 50\\ 103\\ 98\\ 52\\ 120\\ 171\\ 358\\ 206\\ 127\\ 151\end{array}$	774 715 2109 1636 1606 1067 1221 731 1637 1628 1737 1082 1289 1299 2121 1717 1154 1818 1722 1733 980 2658 1733 1532 1079 797 1441 926 1185 1357 1491 1266 1308 5000 1524 1203 1299	$\begin{array}{c} 26\\ 33\\ 117\\ 40\\ 24\\ 273\\ 76\\ -\\ 92\\ 265\\ 209\\ 132\\ 78\\ 107\\ 247\\ 283\\ 192\\ 71\\ 209\\ 94\\ 620\\ 233\\ 118\\ 253\\ 240\\ 63\\ 338\\ 144\\ 63\\ 68\\ 133\\ 79\\ 81\\ -\\ 89\\ 192\\ 1603\\ 152\\ 316\\ 91\\ \end{array}$	$\begin{array}{c} 32\\ 24\\ 86\\ 91\\ 137\\ 153\\ 58\\ -\\ 54\\ 75\\ 76\\ 78\\ 127\\ 49\\ 97\\ 71\\ 91\\ 38\\ 82\\ 44\\ 88\\ 167\\ 43\\ 139\\ 100\\ 90\\ 72\\ 116\\ 81\\ 43\\ 119\\ 50\\ 50\\ -\\ 38\\ 146\\ 224\\ 95\\ 83\\ 104 \end{array}$	$\begin{array}{c} 0.6\\ 0.8\\ 3.9\\ 1.5\\ 1.2\\ 4.7\\ 1.2\\ -\\ 5.8\\ 7.0\\ 5.4\\ 2.2\\ 1.8\\ 1.9\\ 3.0\\ 6.1\\ 1.6\\ 0.9\\ 2.2\\ 3.6\\ 9.3\\ 2.0\\ 3.8\\ 10.7\\ 3.6\\ 0.7\\ 5.2\\ 3.6\\ 1.2\\ 1.5\\ 2.9\\ 2.5\\ -\\ 1.9\\ 5.4\\ 5.2\\ 3.8\\ 3.9\end{array}$	$\begin{array}{c} 0.13\\ 0.16\\ 0.47\\ 0.69\\ 0.47\\ 0.69\\ 0.73\\ 0.41\\ -\\ 0.38\\ 0.62\\ 0.70\\ 0.84\\ 0.56\\ 0.39\\ 0.61\\ 0.66\\ 0.39\\ 0.61\\ 0.66\\ 0.18\\ 0.44\\ 1.90\\ 0.93\\ 0.67\\ 0.01\\ 0.54\\ 0.56\\ 0.58\\ 0.$	$\begin{array}{c} 19\\ 16\\ 22\\ 4\\ 13\\ 6\\ -\\ 5\\ 13\\ 12\\ 12\\ 26\\ 9\\ 9\\ 19\\ 20\\ 10\\ 11\\ 27\\ 6\\ 36\\ 20\\ 24\\ 101\\ 13\\ 9\\ 36\\ 76\\ 9\\ 19\\ 15\\ 14\\ 12\\ -\\ 19\\ 23\\ 52\\ 57\\ 15\\ 26\end{array}$	$\begin{array}{c}1\\16\\23\\22\\317\\147\\1\\-\\1\\66\\81\\66\\-\\0\\117\\111\\111\\1\\1\\27\\557\\27\\45\\22\\-\\1\\6\\6215\\-\\1\\3\\169\\1500\\171\\15\\-\end{array}$	$\begin{array}{c} 71\\ 57\\ 156\\ 142\\ 112\\ 207\\ 122\\ -\\ 85\\ 190\\ 174\\ 168\\ 131\\ 71\\ 97\\ 343\\ 192\\ 99\\ 182\\ 128\\ 131\\ 160\\ 110\\ 165\\ 320\\ 198\\ 151\\ 1255\\ 198\\ 80\\ 74\\ 114\\ 143\\ -\\ 120\\ 238\\ 229\\ 128\\ 117\\ \end{array}$
Dried fruits Apricots Currants Dates Figs Peaches Prunes Raisins Sultanas	2208 908 882 1220 1307 1125 1096 1047	108 122 79 341 42 49 77 64	76 46 68 111 64 35 53 43	4.8 2.3 1.9 5.0 8.0 3.8 2.0 2.2	$\begin{array}{c} 0.30\\ 0.60\\ 0.20\\ 0.30\\ 0.70\\ 0.20\\ 0.30\\ 0.40\\ \end{array}$	$ \begin{array}{r} 66 \\ 25 \\ 6 \\ 104 \\ 7 \\ 16 \\ 66 \\ 64 \\ \end{array} $	40 20 339 200 12 3 11 19	138 52 75 110 137 108 42 116	2204 854 820 1165 1302 1103 1175 1250	108 110 53 301 43 49 53 75	76 36 48 96 64 35 40 37	$\begin{array}{c} 4.8 \\ 1.5 \\ 1.5 \\ 5.1 \\ 8.0 \\ 3.8 \\ 4.4 \\ 2.6 \end{array}$	$\begin{array}{c} 0.47 \\ 0.96 \\ 0.30 \\ 0.36 \\ 0.75 \\ 0.20 \\ 0.45 \\ 0.47 \end{array}$	66 17 12 75 7 16 69 22	41 19 433 207 13 4 10 19	141 84 70 107 142 106 88 101
Nuts Almonds Barcelona Brazil Chestnut Hazelnut Coconut (solid) Peanut Walnut	898 991 831 1029 580 751 712 898	259 180 192 95 74 23 64 79	270 214 449 69 94 90 189 172	$\begin{array}{r} 4.4 \\ 3.1 \\ 3.1 \\ 1.8 \\ 1.8 \\ 3.6 \\ 2.1 \\ 3.1 \end{array}$	0.10 1.00 1.20 0.50 0.40 0.50 0.30 0.40	6 3 23 23 2 28 6 3	$2 \\ 36 \\ 67 \\ 31 \\ 10 \\ 196 \\ 7 \\ 30$	464 317 647 153 385 162 382 667	814 997 679 1035 765 673 715 463	251 180 175 95 147 24 64 97	282 212 422 68 168 75 224 165	3.1 3.2 2.6 1.9 3.4 3.8 2.7 3.0	$\begin{array}{c} 1.04 \\ 1.02 \\ 1.81 \\ 0.48 \\ 1.29 \\ 0.58 \\ 1.09 \\ 1.38 \end{array}$	15 3 23 6 31 2 7	19 36 59 31 19 200 7 25	574 318 607 153 314 171 459 391

 TABLE I

 Mineral concentrations of UK vegetables, fruits and nuts recorded in the laboratory notebooks of McCance and Widdowson (1929-1944) and published by McCance et al. (1938), or published by the Food Standards Agency (2002)

 1 All mineral concentrations are quoted in mg 100 g $^{-1}$ DW.

P. J. WHITE and M. R. BROADLEY

TABLE II
Mineral concentrations of US vegetables, fruits and nuts listed by Beeson (1941) and those available from the USDA ¹

Vegetables Potato Butter (Lima) bean Haricot (Navy) bean Lentil	К	Ca	Mg	Fe	0	_	17	~		_	-	
Potato Butter (Lima) bean Haricot (Navy) bean			1115	ге	Cu	Р	K	Ca	Mg	Fe	Cu	Р
Butter (Lima) bean Haricot (Navy) bean												
Haricot (Navy) bean	2280^{2}	49	130	10.5	0.80	250	2137	55	112	3.6	0.58	295
	1890	104	200	11.2	0.90	412	1569	114	195	10.6	1.07	457
Lentil	1410	170	190 NA	13.9	1.10	630	1472	72	484	9.3	1.71	480
0.00	NA 1410	NA 100	NA 180	NA 12.6	NA	NA 570	NA 1154	NA	NA 156	NA 7.0	NA 0.82	NA 511
Pea Aubergine (Eggnlant)	1410 NA	190 NA	180 NA	12.6 14.8	0.90 1.30	NA	1154 3030	118 119	156 184	7.0 3.2	0.83 1.08	511 329
Aubergine (Eggplant) Cabbage	2710	730	160	9.5	1.30	380	2843	513	218	6.9	0.37	348
Carrot	2100	400	170	17.9	1.00	330	2733	282	102	2.6	0.38	299
Celery	3920	2360	390	15.9	16.30	640	5689	875	241	4.4	0.77	525
Chicory, witloof	NA	NA	NA	NA	NA	NA	3850	347	182	4.4	0.93	474
Cucumber	4480	740	NA	27.0	2.40	750	3082	335	273	5.9	0.86	503
Lettuce	5980	770	240	103.4	1.90	560	3368	433	184	4.6	0.58	396
Mushroom	NA	NA	NA	10.9	6.20	NA	4164	40	119	6.9	4.23	1127
Mustard	NA 1520	2130	50	49.7	NA	710	3848	1120	348	15.9	1.60	467
Onion	1520 1850	390 280	130 120	13.0 11.4	1.20 0.70	260 370	1257 1832	192 176	87 142	1.7 2.9	0.33 0.59	236 347
Parsnip Pumpkin	2470	280 500	260	NA	0.70	240	4048	250	142	2.9 9.5	1.51	524
Radish	NA	NA	NA	43.6	2.90	NA	4926	529	211	7.2	1.06	423
Spring onion	NA	NA	NA	NA	NA	NA	2714	708	197	14.6	0.82	364
Swede (Rutabaga)	1910	490	140	27.5	0.80	270	3259	455	222	5.0	0.39	561
Tomato	4800	240	300	20.2	1.40	550	4309	182	200	4.9	1.07	436
Furnip	2770	510	240	9.2	0.90	360	2349	369	135	3.7	1.05	332
Watercress	NA	NA	NA	92.9	1.20	NA	6748	2454	429	4.1	1.57	1227
Endive	NA	NA	NA	70.0	NA	NA	5056	837	242	13.4	1.59	451
Fruits												
Apples	740	77	NA	1.5	0.60	71	675	38	30	0.5	0.23	83
Apricots	NA	NA	NA	4.3	NA	NA	1897	95	73	2.9	0.57	168
Avocado pear	NA	NA	NA	26.4	NA	NA	1812	45	108	2.1	0.71	194
Bananas	NA	NA	NA	2.8	0.90	NA	1427	20	108	1.0	0.31	88
Blackberries	NA	NA	NA	6.3	1.00	NA	1367	245	169	5.2	1.39	186
Cherries, eating	NA	NA NA	NA NA	6.9 NA	1.40 NA	NA NA	1251 1247	73 115	62 65	2.0 2.3	0.34 0.75	118 108
Cherries, cooking Cranberries	NA NA	NA	NA	1.9	0.80	NA	660	62	47	2.3 1.9	0.73	108
Currants, black	NA	NA	NA	NA	1.70	NA	1785	305	133	8.5	0.47	327
Currants, red	NA	NA	NA	NA	NA	NA	1713	206	81	6.2	0.67	274
Currants, white	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Custard Apple	NA	NA	NA	NA	NA	NA	1340	105	63	2.5	NA	74
Figs	NA	NA	NA	3.7	0.60	NA	1111	168	81	1.8	0.34	67
Gooseberries	NA	NA	NA	4.7	0.80	NA	1632	206	82	2.6	0.58	223
Grapes	NA	NA	NA	6.7	0.80	NA	1001	63	31	1.7	0.44	79
Grapefruit	NA	NA 580	NA 110	12.4	0.50	NA 100	1526	132	88	1.0	0.52	88 119
Lemons, whole Melons, cantaloupe	1310 NA	580 NA	110 NA	NA NA	0.30 NA	190 NA	1151 2711	484 91	95 122	0.6 2.1	2.06 0.42	119
Mulberries	NA	NA	NA	28.0	0.40	NA	1575	317	146	15.0	0.42	308
Nectarines	NA	NA	NA	NA	NA	NA	1620	48	73	2.3	0.69	210
Oranges	NA	NA	NA	4.4	1.00	NA	1366	302	75	0.8	0.34	106
Passionfruit (Granadilla)	NA	NA	NA	NA	NA	NA	1286	44	107	5.9	0.32	251
Peaches	NA	NA	NA	14.0	NA	NA	1707	54	81	2.2	0.61	180
Pears	NA	NA	NA	8.4	1.00	NA	731	55	43	1.0	0.50	68
Pineapple	NA	NA	NA	14.4	0.80	NA	849	96	89	2.1	0.73	59
Plums	NA	NA	NA	11.0	1.00	NA	1229	47	55	1.3	0.45	125
Pomegranate	NA	NA	NA	NA	NA	NA	1361	16	16	1.6	0.37	42
Quinces Raspherries	NA NA	NA NA	NA NA	5.8 6.2	$0.80 \\ 0.80$	NA NA	1216 1060	68 175	49 154	4.3 4.8	0.80 0.63	105 204
Raspberries Rhubarb	NA	NA	NA	6.2 35.6	0.80	NA NA	4507	175	154 188	4.8 3.4	0.63	204 219
Strawberries	2050	310	NA	13.5	0.90	200	1691	1340	144	4.6	0.53	265
Tangerines	NA	NA	NA	4.4	0.60	NA	1266	113	97	0.8	0.23	81
Watermelon	NA	NA	NA	10.9	0.90	NA	1310	82	117	2.8	0.49	129
Dried fruits												
Apricots	NA	NA	NA	NA	NA	NA	1681	80	46	3.8	0.50	103
Currants	NA	NA	NA	NA	NA	NA	1104	106	51	4.0	0.58	155
Dates	NA	NA	NA	4.9	0.30	NA	855	65	61	1.2	0.36	78
Figs	NA	NA	NA	NA	NA	NA	972	232	97	2.9	0.41	96
Peaches	NA	NA	NA	NA	NA	NA	1460	41	62	6.0	0.53	174
Prunes	NA	NA	NA	5.5	0.40	NA	1060	62	59	1.3	0.41	100
Raisins	NA	NA	NA	NA	NA	NA	937	46	37	2.7	0.37	105
Sultanas	NA	NA	NA	NA	NA	NA	877	62	41	2.1	0.43	135
Nuts												
Almonds	NA	NA	NA	4.2	1.20	NA	768	262	290	4.5	1.17	500
Barcelona	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Brazil	NA	NA	NA	4.2	1.50	NA	683	166	390	2.5	1.81	751
Chestnut	NA	NA	NA	6.3	0.70	NA	1089	70	81	2.6	0.72	151
Hazelnut	NA	NA	NA	NA	NA	NA	718	120	172	5.0	1.82	306
Coconut (solid)	NA	NA	NA	NA	1.10	NA	672	26	60	4.6	0.82	213
Peanut Walnut	NA NA	NA NA	NA NA	2.4 3.7	1.00 NA	NA NA	754 460	98 102	180 165	4.9 3.0	1.22 1.65	402 361

¹USDA National Nutrient Database for Standard Reference, Release 16, May 2004. ²All mineral concentrations are quoted in mg 100 g⁻¹ DW.

Mineral concentrations in horticultural crops

			UK c	uotient	1980s/19	30s				US	quotient	2004/19	30s	
-	Κ	Са	Mg	Fe	Cu	Na	Cl	Р	K	Ca	Mg	Fe	Cu	Р
Vegetables			0.01	0.40	0.60			1.04			0.01			
Potato Butter bean	0.74 1.03	0.74 1.03	0.81 1.19	0.49 1.03	0.63 0.64	1.23 0.68	$0.97 \\ 1.04$	1.06 1.04	0.94 0.83	$1.13 \\ 1.10$	$0.86 \\ 0.97$	0.35 0.94	$0.72 \\ 1.19$	1.18 1.11
Haricot bean	1.04	1.04	1.02	1.05	0.98	1.03	1.13	1.04	1.04	0.42	2.55	0.67	1.55	0.76
Lentil Runner bean	1.29 0.77	1.67 0.96	$1.32 \\ 0.80$	1.30 1.57	$1.50 \\ 0.21$	$0.69 \\ 0.01$	1.25 0.89	1.45 1.27						
Pea	0.85	1.18	0.88	1.34	0.22	0.98	0.89	1.06	0.82	0.62	0.87	0.55	0.93	0.90
Aubergine (Eggplant) Cabbage	0.82 0.92	0.90 1.25	$1.07 \\ 0.60$	$0.73 \\ 0.78$	0.11 0.12	0.74 0.28	0.21 1.12	1.23 1.28	1.05	0.70	1.36	0.21 0.73	0.83 0.26	0.91
Carrot	0.92	0.54	0.00	0.78	0.12	0.28	0.50	0.74	1.05	0.70	0.60	0.13	0.20	0.91
Celery	1.53	1.05	0.78	1.26	0.13	0.58	0.95	0.88	1.45	0.37	0.62	0.28	0.05	0.82
Chicory Cucumber	0.62 0.99	$0.76 \\ 0.79$	0.32 0.88	0.39 0.99	$0.24 \\ 0.11$	0.09 0.23	1.21 0.69	0.86 2.03	0.69	0.45		0.22	0.36	0.67
Lettuce	1.04	1.07	0.61	0.94	0.07	0.97	1.17	0.91	0.56	0.56	0.77	0.04	0.31	0.71
Mushroom Mustard and cress	0.78 0.52	2.38 1.21	$0.78 \\ 1.29$	0.67 0.34	$1.28 \\ 0.14$	0.63 1.59	0.93 0.70	$0.67 \\ 0.80$		0.53	6.96	0.63 0.32	0.68	0.66
Onion	0.52	0.53	0.35	0.67	0.41	0.19	0.81	0.66	0.83	0.49	0.67	0.13	0.28	0.91
Parsnip	1.89	0.63	0.87	0.88	0.48	0.51	1.02	0.91	0.99	0.63	1.18	0.25	0.84	0.94
Pumpkin Radish	0.45 1.45	0.79 0.63	$1.30 \\ 0.64$	$1.11 \\ 0.47$	0.29 0.11	0.27	1.07 2.87	1.04 1.07	1.64	0.50	0.55	0.16	3.78 0.36	2.18
Spring onion	1.95	0.49	1.85	2.59	0.77	0.92	1.48	2.08						
Swede (Rutabaga) Tomato	1.23 0.84	0.92 0.51	$0.82 \\ 0.61$	$0.36 \\ 1.11$	$0.28 \\ 0.09$	0.28 3.11	$1.00 \\ 1.04$	2.07 1.08	$1.71 \\ 0.90$	0.93 0.76	1.59 0.67	0.18 0.24	$0.48 \\ 0.77$	2.08 0.79
Turnip	0.89	0.62	0.83	0.45	0.19	0.20	0.42	1.13	0.85	0.72	0.56	0.40	1.16	0.92
Watercress Endive	$0.87 \\ 1.00$	$0.91 \\ 1.00$	1.05	$1.61 \\ 1.01$	$0.09 \\ 0.11$	0.97 0.99	1.29 1.00	1.19 1.01				$0.04 \\ 0.19$	1.31	
Horseradish	1.00	1.00	$0.96 \\ 1.01$	0.99	1.52	1.02	1.00	1.01				0.19		
Fruits														
Apples, eating	1.03	1.12	1.08	0.34	0.18	1.29	0.08	1.45	0.91	0.49		0.35	0.39	1.16
Apples, cooking Apricots	0.84 0.88	1.30 0.91	1.22 0.93	$0.41 \\ 1.40$	0.23 0.52	1.08	0.52 0.98	0.51				0.66		
Avocado pear	0.77	0.49	0.58	0.52	0.63	0.25	0.68	0.86				0.08		
Bananas	1.35 0.93	1.05	0.96	0.86	0.67	1.00	1.17	1.17				0.37	0.35	
Blackberries Cherries, eating	0.95	$0.78 \\ 0.88$	0.94 1.12	$0.99 \\ 0.58$	1.22 1.02	0.67 0.39	1.20 1.34	1.57				0.83 0.29	1.39 0.24	
Cranberries	0.79	0.81	0.83	0.63	0.35	1.10	0.97	1.00				1.02	0.59	
Currants, black Currants, red	0.99 1.02	0.99 1.01	0.99 1.02	1.03 0.98	$1.03 \\ 1.00$	1.11 0.89	$1.02 \\ 1.00$	$1.00 \\ 1.02$					0.28	
Currants, white	1.00	0.98	1.02	0.98	1.05	1.33	1.03	1.00						
Custard Apple Damsons	$0.50 \\ 1.00$	1.74 1.03	$1.41 \\ 1.00$	$1.12 \\ 0.99$	0.93 0.89	$0.50 \\ 0.74$	$0.68 \\ 0.97$							
Figs	0.75	1.03	0.75	0.99	0.89	1.95	0.97	0.47				0.48	0.56	
Gooseberries, unripe	1.02	1.01	1.01	0.95	0.47	1.06	1.09	1.02				0.54	0.72	
Gooseberries, ripe Grapes	1.65 0.82	1.70 1.23	1.72 1.48	$1.73 \\ 0.97$	0.67 1.32	1.44 1.37	$1.68 \\ 0.11$	1.64 1.04				0.25	0.55	
Grapefruit	0.72	1.14	0.74	0.32	0.26	1.95	1.95	1.09				0.08	1.03	
Greengages	1.23 1.00	1.23	1.27	1.31	1.11	0.93 0.91	1.23 1.07	0.94	0.88	0.83	0.87		6.88	0.63
Lemons, whole Loganberries	1.00	$0.86 \\ 1.00$	$1.12 \\ 1.00$	1.52 1.03	$1.05 \\ 1.04$	1.25	1.07	0.94	0.00	0.65	0.87		0.00	0.05
Medlars	1.02	1.00	1.05	1.03	0.95	0.98	0.98	1.00						
Melons, cantaloupe Mulberries	0.54 1.01	0.84 1.01	$0.44 \\ 0.99$	0.30 1.02	$0.02 \\ 1.00$	$0.48 \\ 0.95$	0.81 1.11	0.34 1.00				0.54	1.22	
Nectarines	1.13	3.15	1.41	1.57	1.80	0.20	1.88	1.64						
Oranges Passion Fruit (Granadilla)	0.77 0.61	$1.14 \\ 0.76$	$0.78 \\ 0.80$	0.31 1.23	0.72 0.71	1.71 1.26	0.94	0.89				0.17	0.34	
Peaches	0.01	1.80	1.42	1.23	1.80	0.45	1.48					0.16		
Pears	1.31	1.58	1.17	1.03	0.46	1.32	2.06	1.20				0.12	0.50	
Pineapple Plums, Victoria Dessert	0.76 1.15	1.73 1.14	1.11 1.11	$0.55 \\ 1.30$	1.63 1.19	1.48 1.30	1.19 1.11	1.48				0.14 0.12	0.91 0.45	
Plums, cooking	1.14	0.87	0.94	1.24	1.04	0.96	1.46							
Quinces Raspberries	0.99 0.98	$1.01 \\ 0.79$	$1.00 \\ 1.13$	$0.95 \\ 0.75$	1.03 0.59	0.95 1.54	1.05 1.28	1.00 1.39				$0.74 \\ 0.78$	$1.00 \\ 0.79$	
Rhubarb	0.69	0.91	0.97	0.77	0.55	1.40	1.01	0.82				0.10	0.37	
Strawberries	1.06	0.77	0.91	0.60	0.61	4.08	1.09	1.11	0.82	0.57		0.34	1.06	1.33
Fangerines Watermelon	1.02 0.36	$1.00 \\ 0.38$	$0.97 \\ 0.45$	1.13 0.93	$0.11 \\ 0.65$	$0.88 \\ 0.08$	0.84 0.77	1.01			0.26	$0.18 \\ 0.55$	0.38	
Dried fruits														
Apricots	1.00	1.00	1.00	1.00	1.56	0.99	1.03	1.02						
Currants Dates	0.94 0.93	0.90 0.67	$0.77 \\ 0.71$	$0.67 \\ 0.80$	1.60 1.52	$0.66 \\ 1.95$	$0.95 \\ 1.28$	1.62 0.94				0.25	1.20	
Figs	0.96	0.88	0.86	1.02	1.19	0.72	1.03	0.97				0.20	1.20	
Peaches	1.00	1.01	1.00	1.01	1.07	1.01	1.08	1.04				0.24	1.02	
Prunes Raisins	0.98 1.07	1.01 0.69	$1.00 \\ 0.76$	$0.99 \\ 2.19$	$1.02 \\ 1.50$	$1.00 \\ 1.05$	1.45 0.94	0.98 2.08				0.24	1.02	
Sultanas	1.19	1.18	0.85	1.18	1.18	0.35	0.99	0.87						
Nuts		<i>c</i> -			40.5								<i>c</i> -	
Almonds Barcelona	0.91 1.01	$0.97 \\ 1.00$	1.04 0.99	0.71 1.03	10.44 1.02	2.44 1.06	9.39 1.00	1.24 1.00				1.08	0.98	
Brazil	0.82	0.91	0.94	0.83	1.51	1.54	0.88	0.94				0.60	1.20	
Chestnut	1.01	1.00	0.99	1.04	0.95	0.99	1.00	1.00				0.42	1.03	
Hazelnut Coconut (solid)	1.32 0.90	1.98 1.03	1.78 0.83	1.86 1.06	3.22 1.16	3.14 1.10	1.89 1.02	0.82 1.05					0.75	
Peanut	1.00	1.00	1.19	1.27	3.63	0.36	1.07	1.20				2.04	1.22	
Walnut	0.52	1.22	0.96	0.96	3.45	2.40	0.82	0.59				0.82		

P. J. WHITE and M. R. BROADLEY

 TABLE IV

 Statistical analysis to test if the concentrations of Ca, Cl, Cu, Fe, K, Mg, Na and P have declined in UK produce between the 1930s and the 1980s

											esis: " \log_e of ient equals zero"
	Mineral	n	Mean quotient (1980s/1930s)	Variance	S.D. ¹	S.E. ²	Lower 95% C.I. ³	Upper 95% C.I.	Test statistic (t)	d.f.4	Р
ALL SAMPLES	Ca Cl Cu Fe K	80 69 79 80 80	-0.022 -0.013 -0.516 -0.125 -0.078	0.121 0.365 1.171 0.209 0.084	0.348 0.604 1.082 0.457 0.290	0.039 0.073 0.122 0.051 0.032	-0.100 -0.158 -0.759 -0.227 -0.143	0.055 0.132 -0.274 -0.024 -0.014	-0.58 -0.18 -4.24 -2.45 -2.42	79 68 78 79 79	0.567 0.856 < 0.001 declined 0.016 declined 0.018 declined
	Mg Na P	80 78 80	-0.084 -0.253 0.047	0.117 0.775 0.096	0.342 0.881 0.310	$0.038 \\ 0.100 \\ 0.035$	-0.161 -0.451 -0.022	-0.008 -0.054 0.116	-2.21 -2.54 1.36	79 77 79	0.030 declined 0.013 declined 0.177
VEGETABLES ^a	Ca Cl Cu Fe K Mg Na P	26 26 26 26 26 26 25 26	$\begin{array}{c} -0.126 \\ -0.067 \\ -1.319 \\ -0.175 \\ -0.056 \\ -0.212 \\ -0.701 \\ 0.081 \end{array}$	$\begin{array}{c} 0.138\\ 0.213\\ 0.904\\ 0.260\\ 0.119\\ 0.199\\ 1.171\\ 0.091 \end{array}$	$\begin{array}{c} 0.371 \\ 0.461 \\ 0.951 \\ 0.510 \\ 0.345 \\ 0.447 \\ 1.082 \\ 0.302 \end{array}$	$\begin{array}{c} 0.073 \\ 0.090 \\ 0.187 \\ 0.100 \\ 0.068 \\ 0.088 \\ 0.217 \\ 0.059 \end{array}$	-0.276 -0.253 -1.703 -0.381 -0.196 -0.392 -1.148 -0.041	0.024 0.120 -0.935 0.031 0.083 -0.031 -0.254 0.203	-1.72 -0.74 -7.07 -1.75 -0.83 -2.42 -3.24 1.37	25 25 25 25 25 25 25 24 25	0.097 0.469 < 0.00 declined 0.092 0.415 0.023 declined 0.004 declined 0.182
FRUITS ^a	Ca Cl Cu Fe K Mg Na P	38 27 37 38 38 38 38 37 38	$\begin{array}{c} 0.040 \\ -0.091 \\ -0.411 \\ -0.164 \\ -0.107 \\ -0.014 \\ -0.097 \\ 0.026 \end{array}$	$\begin{array}{c} 0.130\\ 0.517\\ 0.755\\ 0.216\\ 0.082\\ 0.080\\ 0.499\\ 0.111\\ \end{array}$	$\begin{array}{c} 0.360\\ 0.719\\ 0.869\\ 0.465\\ 0.286\\ 0.283\\ 0.706\\ 0.333\end{array}$	$\begin{array}{c} 0.058 \\ 0.138 \\ 0.143 \\ 0.075 \\ 0.046 \\ 0.046 \\ 0.116 \\ 0.054 \end{array}$	-0.079 -0.376 -0.701 -0.317 -0.201 -0.107 -0.332 -0.083	$\begin{array}{c} 0.158\\ 0.194\\ -0.122\\ -0.011\\ -0.013\\ 0.079\\ 0.139\\ 0.136\end{array}$	$\begin{array}{c} 0.68 \\ -0.66 \\ -2.88 \\ -2.17 \\ -2.31 \\ -0.31 \\ -0.83 \\ 0.48 \end{array}$	37 26 36 37 37 37 37 36 37	0.503 0.516 0.007 declined 0.036 declined 0.026 declined 0.760 0.410 0.633
DRY FRUITS ^a	Ca Cl Cu Fe K Mg Na P	8 8 8 8 8 8 8 8	-0.103 0.080 0.270 0.043 0.005 -0.149 -0.134 0.128	0.039 0.023 0.034 0.119 0.007 0.019 0.241 0.095	$\begin{array}{c} 0.197\\ 0.152\\ 0.185\\ 0.346\\ 0.083\\ 0.138\\ 0.491\\ 0.308\\ \end{array}$	$\begin{array}{c} 0.070\\ 0.054\\ 0.065\\ 0.122\\ 0.029\\ 0.049\\ 0.174\\ 0.109\\ \end{array}$	-0.268 -0.047 0.115 -0.246 -0.064 -0.264 -0.544 -0.129	0.063 0.207 0.425 0.332 0.074 -0.034 0.277 0.386	-1.47 1.48 4.13 0.35 0.18 -3.06 -0.77 1.18	7 7 7 7 7 7 7 7	0.185 0.181 0.004 increased 0.737 0.865 0.018 declined 0.466 0.277
NUTS ^a	Ca Cl Cu Fe K Mg Na P	8 8 8 8 8 8 8 8	$\begin{array}{c} 0.099\\ 0.330\\ 0.822\\ 0.052\\ -0.097\\ 0.060\\ 0.308\\ -0.043 \end{array}$	0.063 0.659 0.694 0.083 0.072 0.054 0.484 0.057	0.251 0.812 0.833 0.288 0.268 0.233 0.695 0.238	$\begin{array}{c} 0.089\\ 0.287\\ 0.295\\ 0.102\\ 0.095\\ 0.082\\ 0.246\\ 0.084 \end{array}$	-0.111 -0.349 0.126 -0.189 -0.321 -0.135 -0.274 -0.242	0.309 1.008 1.518 0.293 0.127 0.254 0.889 0.156	$\begin{array}{c} 1.11\\ 1.15\\ 2.79\\ 0.51\\ -1.03\\ 0.73\\ 1.25\\ -0.51\end{array}$	7 7 7 7 7 7 7 7	0.302 0.289 0.027 increased 0.625 0.338 0.491 0.251 0.624

^aPooled values for various appropriate crops listed in Tables I-III.

 1 S.D. = standard deviation.

 2 S.E. = standard error of mean.

 ${}^{3}C.I. = confidence interval.$ ${}^{4}d.f. = degrees of freedom.$

d.i. = degrees of freedom

cell defence mechanisms, red and white blood cell maturation, Fe transport, cholesterol and glucose metabolism, myocardial contractility, bone strength and brain development (Food Standards Agency, 2003). The Food Standards Agency Expert Group on Vitamins and Minerals concluded that Cu deficiency would be rare in the UK (Food Standards Agency, 2003), although it may occur in individuals with a genetic defect, such as Menke's syndrome. Nevertheless, there is considerable genetic variation in the ability of plant species (Broadley et al., 2001) and cultivars to accumulate Cu. For example, Cu concentrations in spinach (Römer and Keller, 2002) and onion (Alvarez et al., 2003) shoots differed by 50% between cultivars; and tubers of different potato cultivars varied over four-fold when grown under comparable conditions (Rivero et al., 2003). Copper concentrations in apples (Iwane, 1991) and strawberries (Hakala et al., 2003) differed by twofold between cultivars, and five cranberry fruit cultivars varied up to 16-fold in their Cu concentrations (Davenport and Provost, 1994). Thus, there may be potential for genetic improvement in the Cu

composition of crops. Furthermore, Cu concentrations in vegetables and fruits can be increased by fertilisation (Smilde *et al.*, 1981; Sterrett *et al.*, 1983; Karam *et al.*, 1998; Shuman, 1998; Tüzen *et al.*, 1998; Rengel *et al.*, 1999; Bunzl *et al.*, 2001; Tamoutsidis *et al.*, 2002; Wen *et al.*, 2002; Bolan *et al.*, 2003). However, the combination of crop variety and Cu fertilisation must be managed appropriately to ensure a balance between adequate and excessive Cu nutrition.

Animals also require Fe to maintain the activities of many important enzymes, and for vital haem proteins such as haemoglobin, myoglobin and the cytochromes which are involved in oxygen transport and energy metabolism, respectively. Like Cu, Fe is under tight homeostatic control, although unlike Cu, Fe deficiency is common in both industrialised and developing countries (Frossard *et al.*, 2000; Welch and Graham, 2004). The estimated Fe requirement for the UK population is $6 - 12 \text{ mg d}^{-1}$ (Food Standards Agency, 2003). In the UK, some groups may not receive sufficient amounts of Fe in their diets, in particular bioavailable haem-Fe from animal sources, which is more easily absorbed by the gut

Statistical a	alucia to t	ant if t	he concentrations	of Ca. Cl. C.		LE V a Na and P	have dealin	ad in US nu	aduaa batwaan	the 10	20 and 2004			
Statistical a	ialysis to te	si ij i.	si ij i.	si ij i.	ne concentrations	oj Ca, Ci, Ci	l, Ге, К , М	g, Na ana r	nave aecun	eu in OS pro	Null hypothesis: "log _e of 2004/1930s quotient equals zero"			
	Mineral	n	Mean quotient (2004/1930s)	Variance	S.D. ¹	S.E. ²	Lower 95% C.I. ³	Upper 95% C.I.	Test statistic (t)	d.f.4	Р			
ALL SAMPLES	Ca Cu Fe K Mg P	19 48 50 18 16 19	$\begin{array}{r} -0.465 \\ -0.396 \\ -1.202 \\ -0.029 \\ 0.008 \\ -0.035 \end{array}$	0.097 0.599 0.702 0.083 0.441 0.120	0.311 0.774 0.838 0.288 0.664 0.346	$\begin{array}{c} 0.071 \\ 0.112 \\ 0.119 \\ 0.068 \\ 0.166 \\ 0.079 \end{array}$	-0.615 -0.621 -1.440 -0.173 -0.346 -0.201	-0.315 -0.172 -0.964 0.114 0.361 0.132	-6.52 -3.55 -10.14 -0.43 0.05 -0.44	18 47 49 17 15 18	< 0.001 declined < 0.001 declined < 0.001 declined 0.670 0.964 0.666			
VEGETABLES	Ca Cu Fe K Mg P	16 19 20 15 15 16	$\begin{array}{c} -0.461 \\ -0.507 \\ -1.375 \\ -0.008 \\ 0.018 \\ -0.039 \end{array}$	$\begin{array}{c} 0.106 \\ 0.850 \\ 0.679 \\ 0.097 \\ 0.470 \\ 0.122 \end{array}$	0.325 0.922 0.824 0.312 0.686 0.349	0.081 0.212 0.184 0.081 0.177 0.087	-0.634 -0.951 -1.761 -0.181 -0.362 -0.225	-0.287 -0.063 -0.989 0.165 0.398 0.147	-5.67 -2.40 -7.46 -0.10 0.10 -0.45	15 18 19 14 14 15	< 0.001 declined 0.028 declined < 0.001 declined 0.925 0.922 0.661			
FRUITS	Ca Cu Fe K P	3 22 23 3 3	-0.487 -0.440 -1.261 -0.138 -0.012	$\begin{array}{c} 0.077 \\ 0.526 \\ 0.629 \\ 0.003 \\ 0.160 \end{array}$	0.277 0.725 0.793 0.051 0.400	0.160 0.155 0.165 0.029 0.231	-1.175 -0.762 -1.603 -0.265 -1.006	0.201 -0.118 -0.918 -0.011 0.983	-3.05 -2.84 -7.62 -4.68 -0.05	2 21 22 2 2	0.093 0.010 declined < 0.001 declined 0.043 declined 0.964			
DRY FRUITS	Fe Cu	2 2	$-1.401 \\ 0.098$	$0.000 \\ 0.013$	0.009 0.115	$0.006 \\ 0.082$	-1.478 -0.939	-1.324 1.135	-231.05 1.21	1 1	0.003 declined 0.441			
NUTS	Fe	5	-0.159	0.364	0.603	0.270	-0.908	0.590	-0.59	4	0.588			

^aPooled values for various appropriate crops listed in Tables II.

0.019

0.040

0.200

0.090

-0.230

0.268

 $^{1}SD = standard deviation$.

Cu

 2 S.E. = standard error of mean.

C.I. = confidence interval. ⁴d.f. = degrees of freedom.

than the tightly-bound non-haem Fe which occurs in plant-derived products. For example, the 2003 UK National Diet and Nutrition Survey estimated that 25% of women had inadequate Fe consumption, rising to > 40% in the 18-34 year-old age range (Henderson et al., 2003; Marriott and Buttriss, 2003). Notably, total Fe intake does not equate to the Fe status of an individual and Fe-homeostasis is critically dependent on whether an individual is susceptible to blood loss or has a diet low in haem-Fe or vitamin C (Food Standards Agency, 2003). The main sources of dietary Fe in the UK are cereals and cereal products (44%), while meat and meat products (17%) and vegetables excluding potatoes (10%) are also significant sources. Fruits and nuts are not significant sources of Fe intake, contributing only 3% of the Fe, and 7% of the K to the average UK diet (Henderson et al., 2003). Thus, any decline in Fe in fruits or nuts will have little impact on the UK diet.

To address potential Fe-deficiencies in the UK, there is mandatory fortification of white and brown flour, and many breakfast cereals are fortified with Fe on a voluntary basis (Food Standards Agency, 2003). However, there is considerable genetic variation in the ability of plants to accumulate Fe, and international endeavours to breed staple crops with increased Fe content are being adopted to address Fe-deficiency in the Developing World (Frossard et al., 2000; Welch and Graham, 2004). For example, a 2.6-fold variation in Fe concentrations in field grown Phaseolus genotypes has been the target for a breeding programme at the Centro Internacional de Agricultura Tropical (Welch and Graham, 2004). Iron concentrations in apples (Iwane, 1991) and strawberries (Hakala et al., 2003) differ by only 20-60% between cultivars; however, an eight-fold variation in Fe concentrations has been observed across 11 plum varieties (Nergiz and Yildiz, 1997), and the five cranberry fruit cultivars quoted above differed by almost 20-fold in their Fe concentrations (Davenport and Provost, 1994). Iron concentrations in vegetables and fruits can also be increased by appropriate fertilisation (Shuman, 1998; Rengel et al., 1999; Frossard et al., 2000).

4

0.842

0.21

In conclusion, the average concentrations of some minerals within a range of horticultural products, in general, has decreased since the 1930s in the UK. Parallel changes can be seen in the USA. However, this phenomenon is unlikely to affect UK diets since the proportion of these minerals derived from horticultural products is generally low (Henderson et al., 2003). If necessary, micro-nutrient fertilisation strategies could be adopted to alter crop mineral composition. However, there is considerable genetic variation between horticultural crop genotypes, and crop selection or breeding could also be used to increase dietary mineral intakes in certain sections of the population in the future.

This research was funded by the UK Department for Environment, Food and Rural Affairs (Defra). We thank Brian Smith for stimulating our initial interest in historical trends in mineral composition of edible horticultural products, Ms. Helen Wakely, at the Wellcome Library for the History and Understanding of Medicine for sourcing the laboratory notebooks of McCance and Widdowson, and Mark Roe (Institute of Food Research, Norwich) and Clive Rahn (Warwick HRI) for their comments on sampling and analytical procedures and copper fertilisation, respectively.

- ALVAREZ, J., MARCÓ, L. M., ARROYO, J., GREAVES, E. D. and RIVAS, R. (2003). Determination of calcium, potassium, manganese, iron, copper and zinc levels in representative samples of two onion cultivars using total reflection X-ray fluorescence and ultrasound extraction procedure. *Spectrochimica Acta Part B*, 58, 2183–2189.
- BEESON, K. C. (1941). The Mineral Composition of Crops with Particular Reference to the Soils in which they were Grown. A Review and Compilation. United States Department of Agriculture Miscellaneous Publications No. 369. Washington DC, USA. 164 pp.
- BOLAN, N., ADRIANO, D., MANI, S. and KHAN, A. (2003). Adsorption, complexation, and phytoavailability of copper as influenced by organic manure. *Environmental Toxicology and Chemistry*, 22, 450–456.
- BROADLEY, M. R., WILLEY, N. J., WILKINS, J. C., BAKER, A. J. M., MEAD, A. and WHITE, P.J. (2001). Phylogenetic variation in heavy metal accumulation in angiosperms. *New Phytologist*, **152**, 9–27.
- BUNZL, K., TRAUTMANNSCHEIMER, M., SCHRAMEL, P. and REIFENHÄUSER, W. (2001). Availability of arsenic, copper, lead, thallium, and zinc to various vegetables grown in slag-contaminated soils. *Journal of Environmental Quality*, **30**, 934–939.
- DAVENPORT, J. R. and PROVOST, J. (1994). Cranberry tissue nutrient levels as impacted by three levels of nitrogen fertilizer and their relationship to fruit yield and quality. *Journal of Plant Nutrition*, **17**, 1625–1634.
- DAVIS, D. R., EPP, M. D. and RIORDAN, H. D. (2004). Changes in USDA food composition data for 43 garden crops, 1950 to 1999. *Journal of the American College of Nutrition*, 23, 669–682.
- FOOD STANDARDS AGENCY (2002). McCance and Widdowson's The Composition of Foods. Sixth Summary Edition. Royal Society of Chemistry, Cambridge, UK. 537 pp.
- FOOD STANDARDS AGENCY (2003). Safe Upper Levels for Vitamins and Minerals: Report of the Expert Group on Vitamins and Minerals. Food Standards Agency, London, UK. 360 pp.
- FROSSARD, E., BUCHER, M., MÄCHLER, F., MOZAFAR, A. and HURRELL, R. (2000). Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. *Journal of the Science of Food and Agriculture*, 80, 861–879.
- HAKALA, M., LAPVETELÄINEN, A., HOUPALAHTI, R., KALLIO, H. and TAHVONEN, R. (2003). Effects of varieties and cultivation conditions on the composition of strawberries. *Journal of Food Composition and Analysis*, **16**, 67–80.
- HENDERSON, L., IRVING, K., GREGORY, J., BATES, C. J., PRENTICE, A., PERKS J., SWAN, G. and FARRON, M. (2003). The National Diet and Nutrition Survey: Adults aged 19–64 years. Volume 3: Vitamin and Mineral Intake and Urinary Analysis. Her Majesty's Stationery Office (HMSO). London, UK. 160 pp.
- HOLLAND, B., UNWIN, I. D. and BUSS, D. H. (1991a). Vegetables, Herbs and Spices. Fifth Supplement to the Fourth Edition of McCance and Widdowson's The Composition of Foods. The Royal Society of Chemistry, Cambridge, UK and Ministry of Agriculture, Fisheries and Food, London, UK. 163 pp.
- HOLLAND, B., WELCH, A. A., UNWIN, I. D., BUSS, D. H., PAUL, A. A. and SOUTHGATE, D. A. T. (1991b). *McCance and Widdowson's The Composition of Foods*. Fifth Edition: Royal Society of Chemistry, Cambridge, UK. 462 pp.
- HOLLAND, B., UNWIN, I. D. and BUSS, D. H. (1992). Fruit and Nuts. First Supplement to the Fifth Edition of McCance and Widdowson's The Composition of Foods. The Royal Society of Chemistry, Cambridge, UK and Ministry of Agriculture, Fisheries and Food. London, UK. 136 pp.

- IWANE, A. (1991). Effect of cultivar and year on mineral components of apples. *Journal of the Japanese Society for Food Science* and Technology, **38**, 329–336.
- KARAM, N. S., EREIFEJ, K. I., SHIBLI, R. A., ABUKUDAIS, H., ALKO-FAHI, A. and MALKAWI, Y. (1998). Metal concentrations, growth, and yield of potato produced from in vitro plantlets or microtubers and grown in municipal solid-waste-amended substrates. *Journal of Plant Nutrition*, **21**, 725–739.
- MARRIOTT, H. and BUTTRISS, J. (2003). Key points from the National Diet and Nutrition Survey of adults aged 19–64 years. *Nutrition Bulletin*, 28, 355–363.
- MAYER, A.-M. (1997). Historical changes in the mineral content of fruits and vegetables. *British Food Journal*, **99**, 207–211.
- MCCANCE, R. A., WIDDOWSON, E. M. and SHACKLETON, L. R. B. (1938). *The Nutritive Value of Fruits, Vegetables and Nuts.* Medical Research Council, Special Report Series No. 213. London, UK. 107 pp.
 MCCANCE, R. A. and WIDDOWSON, E. M. (1960). *The Composition*
- MCCANCE, R. A. and WIDDOWSON, E. M. (1960). *The Composition* of Foods. Third Edition. Medical Research Council, Special Report Series No. 297. London, UK. 252 pp.
- NERGIZ, C. and YILDIZ, H. (1997). Research on chemical composition of some varieties of European plums (*Prunus domestica*) adapted to the Aegean district of Turkey. *Journal of Agricultural and Food Chemistry*, **45**, 2820–2823.
- RENGEL, Z., BATTEN, G. D. and CROWLEY, D. E. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. *Field Crops Research*, **60**, 27–40.
- RIVERO, R. C., HERNÁNDEZ, P. S., RODRÍGUEZ, E. M. R., MARTÍN, J. D. and ROMERO, C. D. (2003). Mineral concentrations in cultivars of potatoes. *Food Chemistry*, 83, 247–253.
- RÖMER, W. and KELLER, H. (2002). Die Variabilität der Cu-, Zn- und Cd-Gehalte bei Spinatsorten in Abhängigkeit von der P-Ernährung. Gartenbauwissenschaft, 67, 255–264.
- SHUMAN, L. M. (1998). Micronutrient fertilizers. Journal of Crop Production, 1, 165–195.
- SMILDE, K. W. (1981). Heavy-metal accumulation in crops grown on sewage sludge amended with metal salts. *Plant and Soil*, 62, 3–14.
- STERRETT, S. B., REYNOLDS, C. W., SCHALES, F. D., CHANEY, R. L. and DOUGLASS, L. W. (1983). Transplant quality, yield, and heavy-metal accumulation of tomato, muskmelon, and cabbage grown in media containing sewage sludge compost. *Journal of the American Society for Horticultural Science*, **108**, 36–41.
- TAMOUTSIDIS, E., PAPADOPOULOS, I., TOKATLIDIS, L., ZOTIS, S. and MAVROPOULOS, T. (2002). Wet sewage sludge application effect on soil properties and element content of leaf and root vegetables. *Journal of Plant Nutrition*, 25, 1941–1955.
- TÜZEN, M., ÖZDEMIR, M. and DEMIRBAS, A. (1998). Heavy metal bioaccumulation by cultivated Agaricus bisporus from artificially enriched substrates. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung A – Food Research and Technology, 206, 417–419.
- WELCH, R. M. and GRAHAM, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. *Journal of Experimental Botany*, 55, 353–364.
- WEN, G., BATES, T. E., INANAGA, S., VORONEY, R. P., HAMAMURA, K. and CURTIN, D. (2002). A yield control approach to assess phytoavailability of Zn and Cu in irradiated, composted sewage sludges and composted manure in field experiments: II. Copper. *Plant and Soil*, **246**, 241–248.